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Abstract
Nicotinamide adenine dinucleotide (NAD) levels decline during aging, contributing to 
physical and metabolic dysfunction. The NADase CD38 plays a key role in age-related 
NAD decline. Whether the inhibition of CD38 increases lifespan is not known. Here, 
we show that the CD38 inhibitor 78c increases lifespan and healthspan of naturally 
aged mice. In addition to a 10% increase in median survival, 78c improved exercise 
performance, endurance, and metabolic function in mice. The effects of 78c were 
different between sexes. Our study is the first to investigate the effect of CD38 inhi-
bition in naturally aged animals.

K E Y W O R D S
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NAD is a cofactor of oxidation–reduction reactions and is a sub-
strate for enzymes involved in cellular homeostasis (Chini et al., 
2020; Hogan et al., 2019; Johnson & Imai, 2018; Katsyuba et al., 
2020; McReynolds et al., 2020). NAD levels decrease with aging 
and progeroid states, which is associated with metabolic abnormali-
ties and fitness decline (Camacho-Pereira et al., 2016; Gomes et al., 
2013; Tarrago et al., 2018). The NAD-consuming enzymes such as 
CD38 and PARP1 have been shown to play a major role in this pro-
cess (Aksoy et al., 2006; Camacho-Pereira et al., 2016; Tarrago et al., 
2018). The accumulation of CD38+-inflammatory cells decreases 
NAD levels in aging (Chini et al., 2019, 2020; Covarrubias et al., 
2021). The small molecule 78c is a specific and potent inhibitor of 
CD38 (Chini et al., 2018; Escande et al., 2013; Tarrago et al., 2018) 
that boosts NAD levels, improves survival of progeroid mice, and 

ameliorates several metabolic, structural, and molecular features of 
aging (Tarrago et al., 2018). However, to date the effect of CD38 in-
hibition on natural aging and longevity has not been explored. Here, 
we demonstrate that 78c increases the lifespan and healthspan of 
naturally aged male mice.

When offered the food to young mice ad libitum, 78c signifi-
cantly boosted NAD, validating the 78c PO treatment. (Figure S1a). 
We then placed 1-year-old C57BL/6 male and female mice on either 
a control or 78c diet and closely followed their healthspan and lon-
gevity (Figure 1a).

When both sexes were grouped, treatment with 78c signifi-
cantly improved longevity, with a maximal survival increase of 9% 
(p = 0.029) (Figure 1b). When analyzing survival for males and fe-
males separately, a sex-specific effect of 78c was observed. The 
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78c-treated males had a 17% increase in median survival (p = 0.008) 
and a 14% increase in maximal lifespan (p = 0.041) compared with 
control. (Figure 1c). In females, no significant survival benefit was 
observed (Figure 1c).

The causes of death were classified as natural (i.e., animal 
found dead for unknown reason) and IACUC humane endpoint 
criteria (Figure S1b). The latter encompasses not only moribund 
animals but also conditions of non-fatal health decline that elicit 
animal suffering. We observed a much higher proportion of IACUC 
criteria deaths in the 78c-treated females. Notably, the abrupt de-
cline in the survival curve of that group coincides with the occur-
rence of consecutive euthanasias due to IACUC recommendation, 
suggesting that 78c may cause non-fatal deleterious conditions in 
female mice. (Figure S1c). Interestingly, the survival analysis up to 
this point was statistically significant (Figure 1d). In addition, au-
topsy studies showed no significant difference in the proportion 
of visible tumors between treated and non-treated animals (Figure 
S1d), indicating that 78c increased longevity in males without an 
evident antitumor effect.

Animals were also longitudinally evaluated for exercise per-
formance, being subjected to a treadmill test at different ages and 
times on diet (Figure 1a). Males on 78c showed a better exercise per-
formance than their control group starting at 21 months old (m.o.) 
(37 weeks on diet) (Figure S1e). This difference was maintained in 
males (Figure 1e) and evident in all animals together (Figure 1f) when 
they were exercised at 24 m.o. (50 weeks on diet). When evaluat-
ing the variation in the maximum distance that animals were able to 
run to exhaustion over the time, control animals presented a greater 
negative slope in the curve than the 78c-treated animals (Figure 1g). 
After 50 weeks on diet, the control group had significant difference 
in the percentage of reduction in the achieved maximum distance 
compared with their performance at 28 weeks of diet and no differ-
ence was observed in the 78c-treated animals (Figure 1h). Muscular 
strength was also improved, as demonstrated in the hanging grip by 
a significant higher latency to fall in the 78c-treated animals com-
pared with control (Figure 1i).

Metabolic parameters were evaluated with Comprehensive 
Lab Animal Monitoring System (CLAMS) at 21 m.o. Males on 78c 
presented a significant higher VO2, VCO2, and metabolic rate 
during the night fasting. There was a trend to increase in these 
same parameters during the day fasting and feed times (Figure 1j). 
Body composition analysis showed that the 78c-treated animals 
presented a significant lower percentage of fat and higher lean 
mass compared to control (Figure 2a), which was not associated 

with caloric restriction (Figure S1f). Females on 78c showed no sig-
nificant difference in energy expenditure compared with control 
(Figure S1g).

Especially during the night, 78c treatment significantly increased 
activity, ambulation, and rearing counts (Figure 2b), but rotarod per-
formance showed no statistically significant differences (Figure 2c). 
The control group presented an abrupt decline in their weight with 
aging, which is one indication of frailty. By contrast, the 78c-treated 
animals had a steadier variation in the weight curve throughout the 
whole experiment (Figure 2d).

We then evaluated the effect of 78c on the frailty in a cohort 
of old male mice (Figure 2e). Frailty scores were derived from clin-
ical examination (Whitehead et al., 2014). Changes in frailty index 
after 3 months were plotted in comparison with the baseline index 
(Figure 2f). All animals in the control group had a significantly 
higher frailty index than that was 3 months earlier, which occurred 
mainly due to a worsening in grimace, body condition score, ky-
phosis, tremor, and eye discharge. By contrast, 78c showed a pro-
tection against age-related frailty increase (Figure 2g). Physical 
exhaustion on treadmill was used as an additional stressor to 
determine resilience. The weight curve shows a clear pattern of 
weight preservation and better weight recovery after the two 
timepoints of physical stress in the animals treated with 78c com-
pared with control (Figure 2h). 78c promoted increase in NAD 
levels (Figure 2i) but it did not change the expression of senes-
cence markers (Figure S1h), suggesting that NAD boosting started 
at a later age ameliorates aging through mechanisms other than 
decreasing senescence. Finally, we observed that the treatment 
of old male mice with 78c for 4  weeks improved insulin levels 
and sensitivity (HOMA-IR) to the levels similar to young mice 
(Figure 2j-n) and that this effect was independent of body weight 
and food intake (Figure S1i-j).

Our results represent the first in vivo longitudinal study using a 
CD38 inhibitor in natural aging. Oral administration of 78c allows 
a steady dose delivery, avoiding potential complications related 
to intraperitoneal injections. Therefore, this approach improves 
the translational potential of CD38 inhibitors as a therapy for age-
related diseases, promoting healthier aging.
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F I G U R E  1 CD38 inhibitor 78c increases lifespan and healthspan in normative aged mice. (a-j) 1-year-old males and females were placed 
on a control or 78c diet and followed during natural aging (n per group are shown in the scheme). (a) Experiment scheme. (b-d) Survival curve 
comparing the control and 78c-treated mice—(b) all animals, (c) each sex separately, and (d) females only, until day 385 of diet. (e-f) Uphill 
treadmill exhaustion test performed at 24 months old (m.o.). Graphs show distance, maximal speed, time, and work. (e) Males only (n = 9–
14 mice/group), and (f) males and females (n = 16–27 mice/group). (g) Maximal distance variation of all animals on different uphill treadmill 
tests over time. (h) Percent change in maximal treadmill distance at 50 weeks compared to 28 weeks on diet. (i) Inverted four limbs hanging 
grip test performed at 20 m.o. (n = 20–28 mice/group). (j) CLAMS performed on males at 21 m.o. Graphs show VO2, VCO2, metabolic rate, 
REE, AEE, and TEE during periods of day and night, and feed and fast (n = 8 mice/group). Survival curves were analyzed with log-rank test. 
All other data are mean ± SEM and analyzed by unpaired two-sided t-test, *p < 0.05, **p < 0.01, ***p < 0.001
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3 and 27 m.o. males underwent glucose and insulin measurement. Then, 27 m.o. mice were placed on a control or 78c diet for 4 weeks 
(n = 12 mice/group). (k) Baseline insulin levels. (l-n) insulin, glucose, and HOMA-IR from 27 m.o. mice after 4 weeks on a control or 78c diet. 
Data are mean ± SEM, analyzed by unpaired two-sided t-test, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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